سفارش تبلیغ
صبا ویژن
دو کار با هم چه ناهمگون است و ناسازوار ، کارى که لذتش رود و گناهش ماند ، و کارى که رنجش برود و پاداشش ماند . [نهج البلاغه]

مقاله تاریخچه نور تحت فایل ورد (word)

ارسال‌کننده : علی در : 94/12/29 3:53 صبح

 

برای دریافت پروژه اینجا کلیک کنید

  مقاله تاریخچه نور تحت فایل ورد (word) دارای 25 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله تاریخچه نور تحت فایل ورد (word)   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه مقاله تاریخچه نور تحت فایل ورد (word)

تعریف واقعی نور  
گسترده طول موجی نور  
ماهیت‌های متفاوت نور  
ماهیت ذره‌ای  
ماهیت موجی  
ماهیت الکترومغناطیس  
ماهیت کوانتومی نور  
نظریه مکملی  
پرتوهای دیگر:  
حالتهای فروپاشی گاما:  
نور و امواج الکترومغناطیس  
خواص نور  
پیروزی نظریه موجی نور  
ماکس کارل ارنست لودویگ پلانک  
پراش نور  
تاریخچه  
انواع پراش  
- پراش فرانهوفر  
- پراش فرنهوفر تک شکاف  
- شکاف دوگانه  
- پراش فرنل  
اصل بابینه  
توری پراش  
محاسبه سرعت نور  
نور و الکترومغناطیس  
نیروی الکتریکی  
الکترومغناطیس  
یکاهای معروف فیزیک امواج الکترومغناطیسی  
معادلات الکترومغناطیس ماکسول و آغاز بحران فیزیک نیوتنی  
آزمایش مایکلسون  
بحران فیزیک کلاسیک  
منابع:  

تعریف واقعی نور

تعریف دقیقی برای نور وجود ندارد، جسم شناخته شده یا مدل مشخص که شبیه آن باشد وجود ندارد. ولی لازم نیست فهم هر چیز بر شباهت مبتنی باشد. نظریه الکترومغناطیسی و نظریه کوانتومی با هم ایجاد یک نظریه نامتناقض و بدون ابهام می کنند که تمام پدیده‌های نوری را توجیه می کنند

نظریه ماکسول درباره انتشار نور بحث می‌‌کند در حالیکه نظریه کوانتومی بر هم کنش نور و ماده یا جذب و نشر آن را شرح می‌‌دهد ازآمیختن این دو نظریه، نظریه جامعی که کوانتوم الکترو دینامیک نام دارد،شکل می‌‌گیرد. چون نظریه‌های الکترو مغناطیسی و کوانتومی علاوه بر پدیده‌های مربوط به تابش بسیاری از پدیده‌های دیگر را نیز تشریح می کنند منصفانه می‌‌توان فرض کرد که مشاهدات تجربی امروز را لااقل در قالب ریاضی جوابگو است. سرشت نور کاملاً شناخته شده است اما باز هم این پرسش هست که واقعیت نور چیست؟

گسترده طول موجی نور

نور گستره طول موجی وسیعی دارد چون با نور مرئی کار می‌‌کنیم اغلب تصاویر و محاسبات در این ناحیه از گستره الکترومغناطیسی انجام می‌‌گیرد امّا روش‌های مورد بحث می‌‌تواند در تمام ناحیه الکترومغناطیسی مورد استفاده قرار گیرند. ناحیه نور مرئی بر حسب طول موج از حدود 400 نانومتر (آبی) تا 700 نانومتر (قرمز) گسترده است که در وسط آن طول موج 555 نانومتر (نور زرد) که چشم انسان بیشترین حساسیت را نسبت به آن دارد یک ناحیه پیوسته که ناحیه مرئی را در بر می‌‌گیرد و تا فروسرخ دور گسترش می‌‌یابد. خواص نور و نحوه تولید سرعت نور در محیط‌های مختلف متفاوت است که بیشترین آن در خلاء و یا بطور تقریبی در هوا است. در داخل ماده به پارامترهای متفاوتی بر حسب حالت و خواص الکترومغناطیسی ماده وابسته است. به‌وسیله کاواک جسم سیاه می‌‌توان تمام ناحیه طول موجی نور را تولید نمود. در طبیعت در طول موج‌های مختلف مشاهده شده امّا مشهورترین آن نور سفید است که یک نور مرکبی از سایر طول موج هاست. تک طول موج‌ها آن را به‌وسیله لامپ‌های تخلیه الکتریکی که معرف طیف‌های اتمی موادی هستند که داخلشان تعبیه شده می‌‌توان تولید کرد

ماهیت‌های متفاوت نور

ماهیت ذره‌ای

ایزاک نیوتن در کتاب خود در رساله‌ای درباره نور نوشت: پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می شوند. احتمالاً نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیط‌های همگن به نظر می‌‌رسد در امتداد خط مستقیم منتشر می شوند که این امر را قانون می‌‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است

ماهیت موجی

هم‌زمان با نیوتن، کریسیتان هویگنس (Christiaan Huygens)، (1695-1629) طرفدار توضیح دیگری بود که در آن حرکت نور به صورت موجی است و از چشمه‌های نوری به تمام جهات پخش می‌‌شود به خاطر داشته باشید که هویگنس با به کاربردن امواج اصلی و موجک‌های ثانوی قوانین بازتاب و شکست را تشریح کرد. حقایق دیگری که با تصور موجی بودن نور توجیه می شوند پدیده‌های تداخلی­اند مانند به وجود آمدن فریزهای روشن و تاریک در اثر بازتاب نور از لایه‌های نازک و یا پراش نور در اطراف مانع

ماهیت الکترومغناطیس

بیشتر به خاطر نبوغ جیمز کلارک ماکسول (James Clerk Maxwell)، ) (1879-1831) است که ما امروزه می‌‌دانیم نور نوعی انرژی الکترومغناطیسی است که معمولاً به عنوان امواج الکترومغناطیسی توصیف می‌‌شود. گسترده کامل امواج الکتروو مغناطیسی شامل: موج رادیویی، تابش فروسرخ، نور مرئی از قرمز تا بنفش، تابش فرابنفش، پرتو ایکس و پرتو گاما می‌‌باشد

 

ماهیت کوانتومی نور

طبق نظریه مکانیک کوانتومی نور، که در دو دهه اول سده بیستم به وسیله پلانک و آلبرت انیشتین و بور برای اولین بار پیشنهاد شد، انرژی الکترو مغناطیسی کوانتیده است، یعنی جذب یا نشر انرژی میدان الکترو مغناطیسی به مقدارهای گسسته‌ای به نام “فوتون” انجام می‌‌گیرد

نظریه مکملی

نظریه جدید نور شامل اصولی از تعاریف نیوتون و هویگنس است. بنابراین گفته می‌‌شود که نور خاصیت دو­گانه‌ای دارد بر خی از پدیده‌ها مثل تداخل و پراش خاصیت موجی آن را نشان می‌‌دهد و برخی دیگر مانند پدیده فتوالکتریک، پدیده کامپتون و ; با خاصیت ذره‌ای نور قابل توضیح هستند

پرتوهای دیگر

فروسرخ: پرتو فروسرخ یا مادون قرمز تابشی است الکترومغناطیسی با طول موجی طولانی­تر از نور مرئی اما کوتاهتر از تابش ریزموج. از آنجا که سرخ، رنگ نور مرئی با درازترین طول موج را تشکیل می‌دهد به این پرتو، فروسرخ یعنی پایین تر از سرخ می‌گویند.تابش فروسرخ طول موجی میان nm 700 و  nm1دارد

گاما: با توجه به اینکه اشعه گاما دارای تشعشع الکترومغناطیسی است، آن فاقد بار و جرم سکون است. اشعه گاما موجب برهم­کنشهای کولنی نمی‌گردد و لذا آنها برخلاف ذرات باردار بطور پیوسته انرژی از دست نمی‌دهند. معمولاً اشعه گاما تنها یک یا چند برهم­کنش اتفاقی با الکترونها یا هسته‌های اتم‌های ماده جذب کننده احساس می‌کند. در این برهم­کنش‌ها اشعه گاما یا بطور کامل ناپدید می‌‌گردد یا انرژی آن بطور قابل ملاحظه‌ای تغییر می‌یابد. اشعه گاما دارای بردهای مجزا نیست، به جای آن، شدت یک باری که اشعه گاما بطور پیوسته با عبور آن از میان ماده مطابق قانون نمایی جذب کاهش می‌یابد.فروپاشی گاما در فروپاشی گاما، هنگامی که یک هسته تحت گذارهایی از حالات برانگیخته بالاتر به حالات برانگیخته پایین‌تر یا حالت پایه آن می‌رود، تشعشع الکترومغناطیسی منتشر می‌گردد. معادله عمومی فروپاشی گاما بصورت زیر است

AZX<——–*AZX +

که در آنX و *X به ترتیب نشان دهنده حالت پایه (غیر برانگیخته) و حالت با انرژی بالاتر است. قابل ذکر است که این فروپاشی با هیچ گونه تغییر در عدد جرمی (A) و عدد اتمی (Z) همراه نیست

حالت برانگیخته هسته و حالت با انرژی پایین حاصل شده در اثر نشر پرتو گاما، فقط زمانی به عنوان ایزومر هسته‌ای در نظر گرفته می‌شود که نیمه عمر حالت برانگیخته به اندازه‌ای طولانی باشد که بتوان آن را به سادگی اندازه گیری نمود. زمانی که این حالت وجود داشته باشد، فروپاشی گاما به عنوان یک گذار ایزومری توصیف می‌گردد. اصطلاحات حالت نیمه پایدار یا حالت برانگیخته برای توصیف گونه‌ها در حالات انرژی بالاتر از حالت پایه نیز به کار می‌رود

حالتهای فروپاشی گاما

 نشر اشعه گامای خالص: در این حالت فروپاشی گاما، اشعه گامای منتشر شده به‌وسیله یک هسته از یک فرآیند فروپاشی گاما برای کلیه گذارها بین ترازهای انرژی که محدوده انرژی آن معمولاً از 2 کیلو الکترون ولت تا 7 میلیون الکترون ولت است، تک انرژی است. این انرژی­های گذارها بین حالت کوانتومی هسته بسیار نزدیک هستند. مقدار کمی از انرژی پس­زنی هسته با هسته دختر (هسته نهایی) همراه است، ولی این انرژی معمولاً نسبت به انرژی اشعه گاما بسیار کوچک بوده و می‌توان از آن صرف­نظر کرد

حالت فروپاشی بصورت تبدیل داخلی: در این حالت فروپاشی، هسته برانگیخته با انتقال انرژی خود به یک الکترون اوربیتال برانگیخته می‌گردد، که سپس آن الکترون از اتم دفع می‌شود. اشعه گاما منتشر نمی‌شود. بلکه محصولات این فروپاشی هسته در حالت انرژی پایین یا پایه، الکترونهای اوژه، اشعه ایکس و الکترونهای تبدیل داخلی است. الکترونهای تبدیل داخلی تک انرژی هستند. انرژی آنها معادل انرژی گذار ترازهای هسته‌ای درگیر منهای انرژی پیوندی الکترون اتمی است

با توجه به اینکه فروپاشی تبدیل داخلی منجر به ایجاد یک محل خالی در اوربیتال اتمی می‌شود، در نتیجه فرآیندهای نشر اشعه ایکس و نشر الکترون اوژه نیز رخ خواهد داد

حالت فروپاشی بصورت جفت: برای گذارهای هسته‌ای با انرژی‌های بزرگ‌تر از 102 میلیون الکترون ولت تولید جفت اگر چه غیر معمول است اما یک حالت فروپاشی محسوب می‌شود. در این فرآیند، انرژی گذرا ابتدا برای بوجود آمدن یک جفت الکترون – پوزیترون و سپس برای دفع آنها از هسته بکار می‌رود

انرژی جنبشی کل داده شده به جفت معادل اختلاف بین انرژی گذار و 102 میلیون الکترون ولت مورد نیاز برای تولید جفت است. پوزیترون تولید شده در این فرآیند نابود خواهد شد

نور و امواج الکترومغناطیس

امروزه می دانیم که نور یک موج الکترمغناطیسی است و بخش بسیار کوچکی از طیف الکترمغناطیسی را تشکیل می دهد. بنابراین برای شناخت نور بایستی به بررسی امواج الکترومغناطیسی پرداخت. اما از آنجایی­که مکانیک کلاسیک قادر به توضیح کامل امواج الکترومغناطیسی نیست، الزاماً بایستی به مکانیک کوانتوم مراجعه کرد. اما قبل از وارد شدن به مکانیک کوانتوم لازم است با برخی از خواص نور آشنا شد و دلیل نارسایی مکانیک کلاسیک را دانست. لذا در این فصل دانش نور را تا پیش از ارائه شدن رابطه­ی مشهور پلانک بررسی می­کنیم و در فصل جداگانه­ای خواص امواج الکترومغناطیسی بعد از مکانیک کوانتوم و نسبیت بررسی خواهد شد

خواص نور

نخستین مسئله­ای که مهم جلوه می­کرد این بود که نور چیست؟ از آنجایی­که عامل دیدن بود و در تاریکی چیزی دیده نمی­شد، سئوال این بود که نور چیست؟ چرا می­بینیم و نور چگونه و توسط چه چیرزی تولید می­شود؟ بالاخره این نظریه پیروز شد که نور توسط اجسام منیر نظیر خورشید و مشعل تولید می­شود. بعد از آن مسئله انعکاس نور مورد توجه قرار گرفت و اینکه چرا برخی از اجسام بهتر از سایر اجسام نور را باز تابش می کنند؟ چرا نور از برخی اجسام عبور می­کند و از برخی دیگر عبور نمی­کند؟ چرا نور علاوه بر آنکه سبب دیدن است موجب گرم شدن نیز می­شود؟ نور چگونه منتقل می­شود؟ سرعت آن چقدر است؟ و سرانجام ماهیت نور و نحوه­ی انتقال آن چیست؟

نخستین آزمایش مهم نور توسط نیوتن در سال 1666 انجام شد. وی یک دسته اشعه نور خورشید را که از شکاف باریکی وارد اتاق تاریکی شده بود، بطور مایل بر وجه یک منشور شیشه­ای مثلث القاعده­ای تابانید. این دسته هنگام ورود در شیشه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در همان جهت منحرف شد

نیوتن دسته اشعه خارج شده را بر یک پرده سفید انداخت. وی مشاهده کرد که به جای تشکیل یک لکه سفید نور، دسته اشعه در نوار رنگینی که به ترتیب مرکب از رنگهای سرخ، نارنجی، زرد، سبز، آبی و بنفش است پراکنده شده است. نوار رنگینی را که از مولفه­های نور تشکیل می­شود، طیف می­نامند

نیوتن نظر داد که نور از ذرات بسیار ریز -دانه­ها- تشکیل می­شود که با سرعت زیاد حرکت می­کند. علاوه بر آن به نظر نیوتن نور در محیط غلیظ باسرعت بیشتری حرکت می­کند. اگر نظر نیوتن در مورد سرعت نور درست می­بود می­بایست سرعت نور در شیشه بیشتر از هوا باشد که می­دانیم درست نیست

 هویگنس در سال 1690 رساله­ای در شرح نظریه موجی نور منتشر کرد. طبق اصل هویگنس حرکت نور به صورت موجی است و از چشمه­های نوری به تمام جهات پخش می­شود. هویگنس با به کاربردن امواج اصلی و موجک­های ثانوی قوانین بازتاب و شکست را تشریح کرد. هویگنس نظر داد که سرعت نور در محیط­های شکست دهنده کمتر از سرعت نور در هوا است که درست است

پیروزی نظریه موجی نور

 نظریه دانه­ای نیوتن هرچند بعضی از سئوالات را پاسخ می­گفت، اما باز هم پرسش­هایی وجود داشت که این نظریه نمی­توانست برای آنها جواب قانع کننده­ای ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد بیشتر منحرف می شوند؟ چرا دو دسته اشعه­ی نور می­توانند بدون آنکه بر هم اثر بگذارند، از هم بگذرند؟

اما بر اساس نظریه موجی هویگنس، دو دسته اشعه­ی نورانی می­توانند بدون آنکه مزاحمتی برای هم فراهم کنند از یکدیگر بگریزند. هویگنس نمی­دانست که نور موج عرضی است یا موج طولی و طول موج­های نور مرئی را نیز نمی­دانست. ولی چون نور در خلاء نیز منتشر می­شود، وی مجبور شد محیط یا رسانه حاملی برای انتشار این امواج در نظر بگیرد. هویگنس تصور می­کرد که این امواج توسط اتر منتقل می شوند. به نظر وی اتر محیط و مایع خیلی سبکی است و همه جا، حتی میان ذرات ماده نیز وجود دارد

نظریه هویگنس نیز بطور کامل رضایت بخش نبود، زیرا نمی­توانست توضیح دهد که چرا سایه­ی واضح تشکیل می­شود، یا چرا امواج نور نمی­توانند مانند امواج صوت از موانع بگذرند؟

نظریه­ی موجی و دانه­ای نور بیش از یکصد­سال با هم مجادله کردند، اما نظریه­ی دانه­ای نیوتن بیشتر مورد قبول واقع شده بود، زیرا از یکطرف منطقی­تر به­نظر می­رسید و از طرف دیگر با نام نیوتن همراه بود. با وجود این هر دو نظریه فاقد شواهد پشتوانه­ای قوی بودند. تا آنکه بتدریج دلایلی بر موجی بودن نور ارائه گردید

لئونارد اویلر فکر امواج دوره­ای را تکمیل کرد، همچنین دلیل رنگ­های گوناگون را مربوط به تفاوت طول موج آنها دانست و این گام بلندی بود. در سال 1800 ویلیام هرشل آزمایش بسیار ساده اما جالبی انجام داد. وی یک دسته اشعه­ی نور خورشید را از منشور عبور داد و در ماورای انتهای سرخ طیف حاصل دماسنجی نصب کرد. جیوه در دما­سنج بالا رفت، بدین ترتیب هرشل تابشی را کشف کرد که به تابش زیر قرمز مشهور شد

در همین هنگام یوهان ویلهلم ریتر انتهای دیگر طیف را کشف کرد. وی دریافت که نیترات نقره که تحت تاثیر نور آبی یا بنفش به نقره­ی فلزی تجزیه و رنگ آن تیره می­شود، اگر در ورای طیف، در جایی­که بنفش محو می­شود، نیترات نقره قرار گیرد حتی زودتر تجزیه می­شود. ریتر نوری را کشف کرد که ما اکنون آن را فوق بنفش می­نامیم. بدین ترتیب هرشل و ریتر از مرزهای طیف مرئی گذشتند و در قلمروهای جدید تابش پا نهادند. در این هنگام دلایل جدیدی برای موجی بودن نور توسط یانگ و فرنل ارائه گردید

در سال 1801 توماس یانگ دست به آزمایش بسیار مهمی زد. وی یک دسته اشعه­ی باریک نور را از دو سوراخ نزدیک بهم گذرانید و بر پرده­ای که در عقب این سوراخ نصب کرده بود تابانید. احتمال می­رفت که اگر نور از ذرات تشکیل شده باشند، محل تلاقی دو دسته اشعه­ای که از سوراخ­ها عبور کرده­اند، بر روی پرده روشن­تر از جاهای دیگر باشد. اما نتیجه­ای که یانگ به دست آورد چیزی دیگر بود. بر روی پرده یک گروه نوارهای روشن تشکیل شده بود که هر یک به وسیله­ی یک نوار تاریک از دیگری جدا می­شد. این پدیده به سهولت با نظریه موجی نور توضیح داده شد

نوار روشن نشان دهنده­ی تقویت امواج یکی از دسته­ها به وسیله­ی امواج دسته­ی دیگر است. به گفته­ی دیگر، هر جا که دو موج هم­فاز شوند، بر یکدیگر افزوده می شوند و یکدیگر را تشدید می کنند. از طرف دیگر نوارهای تاریک نشان­دهنده­ی جاهایی است که امواج در فاز مقابلند، در نتیجه یکدیگر را خنثی می کنند. اگر چه یانگ بارها تاکید کرد که برداشت­هایش ریشه در پژوهش­های نیوتن دارد، اما به سختی مورد حمله قرار گرفت و نظریات وی خالی از هر گونه ارزش تلقی شد. با این وجود یانگ طول موج های متفاوت نور مرئی را اندازه گرفت

در سال 1814 ژان فرنل بی­خبر از کوشش­های یانگ مفاهیم توصیف موجی هویگنس و اصل تداخل را با هم ترکیب کرد و اظهار داشت: ارتعاشات یک موج درخشان را در هر یک از نقاط آن می­توان به عنوان مجموع حرکت­های بنیادی دانست که به آن نقطه می­رسند. بر اثر انتقادهای شدید طرفداران نیوتن، فرنل تاکیدی ریاضی یافت. وی توانست نقش­های پراش ناشی از موانع و روزنه­های گوناگون را محاسبه کند و به طور رضایت بخشی انتشار مستقیم نور را در محیط­های همسان­گرد و همگن توضیح دهد. بدین­سان انتقاد عمده­ی طرفداران نیوتن را نسبت به نظریه موجی بی­اثر کند. هنگامیکه فرنل به تقدم یانگ در اصل تداخل پی­برد، هرچند اندکی مایوس شد، اما نامه­ای به یانگ نوشت و احساس آرامش خود را از هم رای بودن با او ابراز داشت

قبل از ادامه­ی بحث در مورد کارهای فرنل لازم است موج طولی و موج عرضی را تعریف کنیم. در موج طولی جهت انتشار با جهت ارتعاش یکی هستند. نظیر نوسان یک فنر. اما در موج عرضی جهت ارتعاش بر جهت انتشار عمود است، نظیر موج بر سطح آب که نوسان و انتشار عمود بر هم هستند

فرنل تصور می­کرد امواج نور، امواج طولی هستند. اما تصور موج طولی نمی­توانست خاصیت قطبش نور را توجیه کند. فرنل و یانگ چندین سال با این مسئله درگیر بودند تا سرانجام یانگ اظهار داشت که ممکن است ارتعاش اتری همانند موجی در یک ریسمان عرضی باشد. ولی امواج عرضی انها در یک محیط مادی منتقل شوند. از طرفی دیگر با توجه به سرعت نور (که در آن­زمان مقدار آن را نمی­دانستند ولی می­دانستند که فوق العاده زیاد است)، اتر نمی­توانست گاز یا مایع باشد و باید جامد و در عین حال خیلی صلب باشد حتی می­بایست صلب­تر از فولاد باشد. از این گذشته اتر می­بایست در تمام مواد نفوذ کند، یعنی نه تنها در فضا، بلکه باید در بتواند گازها، آب، شیشه و حتی در چشم­ها نفوذ کند، زیرا نور وارد چشم نیز می­شود. علاوه بر این اتر نبایستی هیچ­گونه اصطکاکی داشته باشد و مانع بهم خوردن پلک­ها گردد. با وجود این با تمام مشکلاتی که اتر داشت برای توجیه موجی بودن نور مورد قبول واقع شد. بدین ترتیب در سال 1825 نظریه موجی نور مورد قبول واقع شد و نظریه دانه­ای نیوتن طرفداران چندانی نداشت

ماکس کارل ارنست لودویگ پلانک

ماکس کارل ارنست لودویگ پلانک (23 آوریل 1858 – 4 اکتبر 1947) یکی از مهم‌ترین فیزیک‌دانان آلمان در سده 19 میلادی و اوایل سده 20 بود. او را «پدر نظریه کوانتوم» می‌شناسند

زندگی

در 23 آوریل سال 1858 در شهر کیل آلمان زاده شد وی فرزند ششم ویلهلم پلانک استاد علوم قضایی دانشگاه شهر بود افراد خانواده پلانک احترام زیادی برای آموزش و پرورش و فرهنگ و حفظ ارزشهای سنتی خانواده قائل بودند والدین همه­ی آن خصوصیات را به فرزند انتقال داده بودند نامه‌های پلانک گوشه‌ای از زندگی خانواده­اش را بازگو می­کنند که در آنها سخن از گذرانیدن تابستان در تفرجگاه الدنای کنار دریای بالتیک و بازی کروکه روی چمن و از خواندن رمانهای والتر اسکات در هنگام شب و از به روی صحنه آوردن نمایش و موسیقی با شرکت افراد خانواده زیاد به میان می‌‌آید پلانک دوره دبیرستان را در گیمنازیوم مکسیمیلان شهر مونیخ گذرانید و در آنجا بود که به علاقه خود به علوم پی­برد پلانک اعتبار و امتیاز تفهیم معنای قوانین فیزیک به خود برای اولین بار را به هرمان مولر دبیر ریاضی خویش می‌‌دهد

پلانک یک تیزهوش استثنایی نبود دبیرانش در گیمنازیوم از لحاظ رتبه او را به شاگرد اولی نزدیک می‌‌دانستند اما او را در هیچ زمانی شاگرد اول نشناختند معلمان وی در او جز رفتار شخصی خوب و سختکوشی در کار نشانه‌ای که حاکی از تابناکی هوش یا وجود استعداد خاصی باشد، ندیدند

به هر حال مهارتهای او در برخوردهای اجتماعی باید از گونه تراز اولی بوده باشد چرا که محبوب معلمان و همکلاسان خود بود. پلانک در پایان دوره گیمنازیوم خود در سال 1874 هنوز تصمیمی در زمینه انتخاب رشته برای آموزشهای بعدی خود نگرفته بود تا اینکه سرانجام ابتدا دانشجوی دوره کارشناسی دانشگاه مونیخ و چندی بعد دانشجوی آن دوره دانشگاه برلین شد وی به خواندن فیزیک عملی و ریاضیات پرداخت و در پی انتقال به دانشگاه برلین در کلاسهای فیزیکدانان مشهور آن روز هرمان فن هلمهولتز و گوستاو کی­یرشهوف شرکت کرد پلانک علاقه خویش به ترمودینامیک را مدیون این دو استاد می‌‌دانست

پلانک نظریه مکانیکی گرمای کلاوزیوس را به تفضیل مطالعه کرد و بعدها خاطر نشان ساخت که این مطالعه خصوصی چیزی بود که سرانجام وی را به فیزیک کشانید پلانک که تحت تأثیر کار و روشنی روش استدلال کلاوزیوس قرار گرفته بود رشته اصلی درس خود را ترمودینامیک انتخاب و بررسی در قانون دوم آن را موضوع تز دکترای سال 1879 خویش در دانشگاه مونیخ کرد. تز دکترای پلانک مروری بر دو اصل کلاسیک ترمودینامیک بود اصل اول، اصل بقای انرژی و اصل دوم مفهوم انتروپی (کمیتی که اندازه­اش در تمام فرآیندهای فیزیکی حقیقی مدام در افزایش است) افکار پلانک در باره انتروپی و آزمایشهای پیشنهادی او در آن­باره هیچکدام از راهنمایان دانشگاهی ممتاز او را تحت تأثیر قرار نداد استاد هلمهولتز او را اصلاٌ نخواند و کی­یرشهوف هم آن را نخواند از آن خوشش نیامد حتی کلاوزیوس که منبع الهام او بود کمترین علاقه‌ای به موضوع نشان نداد. پلانک با آن واکنش استادان نسبت به پایان­نامه­ی دکترای خود با وقار و آرامش برخورد کرد و با اشتیاقی حتی بیش از پیش به کار برگشت. فارغ التحصیل شدن وی به سبب بیماری­اش با دو سال تأخیر همراه بود اما درجه دکترایی که سرانجام در سال 1879 گرفت با رتبه ممتاز بود

پلانک در سال 1880 با سمت دانشیاری به هیأت علمی دانشگاه مونیخ پیوست و 5 سال پس از آن به مقام استادی دانشگاه کیل رسید استخدام به عنوان استاد غیر رسمی در دانشگاه کیل پلانک را به استفاده از استقلال علمی بیشتری برخوردار ساخت گوستاو کی­یرشهوف استاد راهنمای قدیمی پلانک در سال 1889 در گذشت و کرسی استادی او در دانشگاه برلین خالی ماند و پلانک به جای کی­یرشهوف به عنوان استاد­یار و مدیر مؤسسه فیزیک نظری منصوب شد. پلانک در یکی از روزها که به یاد نداشته است در چه کلاسی از دانشگاه برلین درس دارد جلوی اتاق دفتر بخش ایستاده و از کارمندی نشانی محل برگزاری درس آن روز پروفسور پلانک را جویا می‌‌شود کارمند در جواب می‌‌گوید: آنجا مرو مرد جوان تو بسیار جوان­تر از آن هستی که بتوانی درس پلانک، استاد فرهیخته ما را بفهمی

پلانک در پی استقرار در کرسی استادی خویش توجه خود را معطوف پدیده تابش جسم سیاه مشکل روز فیزیک کلاسیک کرد که آن را نخستین بار کی­یرشهوف به میان آورده بود. پلانک در سال 1900 به این نتیجه رسید که برای توضیح پدیده تابش جسم سیاه باید ایده کاملاً‌ جدیدی را پیش بکشد. وی این فکر را در میان نهاد که انرژی نیز مانند مادّه از آحاد یا بسته‌های کوچکی درست شده است. او آن آحاد را کوانتوم نام داد که کلمه‌ای مأخوذ از زبان لاتینی به معنی چقدر و جمع آن کوانتا بود، این فکر که با اصول و قوانین آن زمان وفق نمی‌کرد بالطبع مخالفانی بوجود آورد ولی این مخالفتها بیش از 5 سال طول نکشید زیرا تئوری انیشتین که متکی به تئوری کوانتا بیان شد ارزش واقعی و حقیقی تئوری بیان شده به‌وسیله پلانک را معلوم نمود بعد از آن پلانک و انیشتین با یکدیگر مکاتباتی آغاز کردند که تا پایان عمر پلانک ادامه یافت و سبب همکاری­های مهمی بین آنها در زمینه­ی خواص نور نیز شد

سهمی که پلانک در پیشبرد علم ادا کرد او را دانشمند دانشمندان کرد. او مورد احترام همکاران خود در همه­ی حوزه­های علمی و از همه ملیت­های جهان بود. در سال 1918 که جایزه نوبل در فیزیک اعطاء می‌‌شد، آلبرت انیشتین، نیلز بوهر، ارنست رادرفورد و ورنر هایزنبرگ – که همه می‌‌توانستند خود مستحق کسب آن افتخار باشند – مناسبت را با توافق بدون شرط خویش تاریخی کرده و مستحق‌ترین شخص برای جایزه را پلانک دانستند بدین ترتیب پلانک به اخذ جایزه نوبل نائل آمد و استاد دانشگاه برلین گردید. همچنین شاهد تأسیس انجمن ماکس پلانک برای پیشبرد علم به جای انجمن قیصر ویلهلم که در سال 1911 پی افکنده شده بود گردید، خود او (از سال 1930 تا 1937) ریاست این انجمن را بر عهده داشت

پلاک در روز 4 اکتبر 1947 در 92 سالگی در پی یک حمله قلبی درگذشت تاریخ او را به پاس دو کشف عمده اش به یاد خواهد داشت: کشف نظریه کوانتومی و کشف آلبرت انیشتین (انیشتین در سال 1948 در ستایشنامه‌ای که عنوان آن در رثاء ماکس پلانک بود چنین نوشت: انسان‌های زیادی عمر خود را وقف علم می­کنند اما آنها همه به خاطر خود علم آن کار را نمی­کنند عده‌ای برای آن معبد علم می‌‌آیند که علم به آنها بروز فرصت استعدادهای ویژه­شان را می‌‌دهد برای این گروه علم گونه‌ای ورزش است که آنها از تمرین در آن به وجد می‌‌آیند مانند آن ورزشکاری که تمرین دادن به ماهیچه‌های قوی خود شاد می‌‌شود گروه دیگری از انسان‌ها به معبد علم برای عرضه توده مغز خود می‌‌آیند به آن امید که از آن کار بازده مفیدی بیندوزند. این عده تنها از آن رو سر از کار علمی در می‌‌آورند که شرایط گزینش حرفه انتخابی را به حسب اتفاق پیش روی آنها نهاده است اگر شرایط حاکم بر آن گزینش به گونه دیگری بود، آنها ممکن بود سیاستمدار یا مدبر تجاری بشوند چنانچه پیش آید که خدا فرشته‌ای از فرشتگان خود را برای بیرون راندن گروههایی که نام بردیم از معبد به پایین بفرستد، بیم آن دارم که معبد از بن خالی شود. با این حال هنوز شمار اندکی از عابدان در آن باقی خواهند ماند برخی از زمانهای گذشته و برخی از عصر خود ما. پلانک ما جای در گروه اخیر دارد و از این روست که ما همه او را دوست داریم)

پراش نور

 

برای دریافت پروژه اینجا کلیک کنید


کلمات کلیدی :

مقاله تاریخچه نور تحت فایل ورد (word)

ارسال‌کننده : علی در : 94/12/29 3:53 صبح

 

برای دریافت پروژه اینجا کلیک کنید

  مقاله تاریخچه نور تحت فایل ورد (word) دارای 25 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله تاریخچه نور تحت فایل ورد (word)   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه مقاله تاریخچه نور تحت فایل ورد (word)

تعریف واقعی نور  
گسترده طول موجی نور  
ماهیت‌های متفاوت نور  
ماهیت ذره‌ای  
ماهیت موجی  
ماهیت الکترومغناطیس  
ماهیت کوانتومی نور  
نظریه مکملی  
پرتوهای دیگر:  
حالتهای فروپاشی گاما:  
نور و امواج الکترومغناطیس  
خواص نور  
پیروزی نظریه موجی نور  
ماکس کارل ارنست لودویگ پلانک  
پراش نور  
تاریخچه  
انواع پراش  
- پراش فرانهوفر  
- پراش فرنهوفر تک شکاف  
- شکاف دوگانه  
- پراش فرنل  
اصل بابینه  
توری پراش  
محاسبه سرعت نور  
نور و الکترومغناطیس  
نیروی الکتریکی  
الکترومغناطیس  
یکاهای معروف فیزیک امواج الکترومغناطیسی  
معادلات الکترومغناطیس ماکسول و آغاز بحران فیزیک نیوتنی  
آزمایش مایکلسون  
بحران فیزیک کلاسیک  
منابع:  

تعریف واقعی نور

تعریف دقیقی برای نور وجود ندارد، جسم شناخته شده یا مدل مشخص که شبیه آن باشد وجود ندارد. ولی لازم نیست فهم هر چیز بر شباهت مبتنی باشد. نظریه الکترومغناطیسی و نظریه کوانتومی با هم ایجاد یک نظریه نامتناقض و بدون ابهام می کنند که تمام پدیده‌های نوری را توجیه می کنند

نظریه ماکسول درباره انتشار نور بحث می‌‌کند در حالیکه نظریه کوانتومی بر هم کنش نور و ماده یا جذب و نشر آن را شرح می‌‌دهد ازآمیختن این دو نظریه، نظریه جامعی که کوانتوم الکترو دینامیک نام دارد،شکل می‌‌گیرد. چون نظریه‌های الکترو مغناطیسی و کوانتومی علاوه بر پدیده‌های مربوط به تابش بسیاری از پدیده‌های دیگر را نیز تشریح می کنند منصفانه می‌‌توان فرض کرد که مشاهدات تجربی امروز را لااقل در قالب ریاضی جوابگو است. سرشت نور کاملاً شناخته شده است اما باز هم این پرسش هست که واقعیت نور چیست؟

گسترده طول موجی نور

نور گستره طول موجی وسیعی دارد چون با نور مرئی کار می‌‌کنیم اغلب تصاویر و محاسبات در این ناحیه از گستره الکترومغناطیسی انجام می‌‌گیرد امّا روش‌های مورد بحث می‌‌تواند در تمام ناحیه الکترومغناطیسی مورد استفاده قرار گیرند. ناحیه نور مرئی بر حسب طول موج از حدود 400 نانومتر (آبی) تا 700 نانومتر (قرمز) گسترده است که در وسط آن طول موج 555 نانومتر (نور زرد) که چشم انسان بیشترین حساسیت را نسبت به آن دارد یک ناحیه پیوسته که ناحیه مرئی را در بر می‌‌گیرد و تا فروسرخ دور گسترش می‌‌یابد. خواص نور و نحوه تولید سرعت نور در محیط‌های مختلف متفاوت است که بیشترین آن در خلاء و یا بطور تقریبی در هوا است. در داخل ماده به پارامترهای متفاوتی بر حسب حالت و خواص الکترومغناطیسی ماده وابسته است. به‌وسیله کاواک جسم سیاه می‌‌توان تمام ناحیه طول موجی نور را تولید نمود. در طبیعت در طول موج‌های مختلف مشاهده شده امّا مشهورترین آن نور سفید است که یک نور مرکبی از سایر طول موج هاست. تک طول موج‌ها آن را به‌وسیله لامپ‌های تخلیه الکتریکی که معرف طیف‌های اتمی موادی هستند که داخلشان تعبیه شده می‌‌توان تولید کرد

ماهیت‌های متفاوت نور

ماهیت ذره‌ای

ایزاک نیوتن در کتاب خود در رساله‌ای درباره نور نوشت: پرتوهای نور ذرات کوچکی هستند که از یک جسم نورانی نشر می شوند. احتمالاً نیوتن نور را به این دلیل بصورت ذره در نظر گرفت که در محیط‌های همگن به نظر می‌‌رسد در امتداد خط مستقیم منتشر می شوند که این امر را قانون می‌‌نامند و یکی از مثالهای خوب برای توضیح آن بوجود آمدن سایه است

ماهیت موجی

هم‌زمان با نیوتن، کریسیتان هویگنس (Christiaan Huygens)، (1695-1629) طرفدار توضیح دیگری بود که در آن حرکت نور به صورت موجی است و از چشمه‌های نوری به تمام جهات پخش می‌‌شود به خاطر داشته باشید که هویگنس با به کاربردن امواج اصلی و موجک‌های ثانوی قوانین بازتاب و شکست را تشریح کرد. حقایق دیگری که با تصور موجی بودن نور توجیه می شوند پدیده‌های تداخلی­اند مانند به وجود آمدن فریزهای روشن و تاریک در اثر بازتاب نور از لایه‌های نازک و یا پراش نور در اطراف مانع

ماهیت الکترومغناطیس

بیشتر به خاطر نبوغ جیمز کلارک ماکسول (James Clerk Maxwell)، ) (1879-1831) است که ما امروزه می‌‌دانیم نور نوعی انرژی الکترومغناطیسی است که معمولاً به عنوان امواج الکترومغناطیسی توصیف می‌‌شود. گسترده کامل امواج الکتروو مغناطیسی شامل: موج رادیویی، تابش فروسرخ، نور مرئی از قرمز تا بنفش، تابش فرابنفش، پرتو ایکس و پرتو گاما می‌‌باشد

 

ماهیت کوانتومی نور

طبق نظریه مکانیک کوانتومی نور، که در دو دهه اول سده بیستم به وسیله پلانک و آلبرت انیشتین و بور برای اولین بار پیشنهاد شد، انرژی الکترو مغناطیسی کوانتیده است، یعنی جذب یا نشر انرژی میدان الکترو مغناطیسی به مقدارهای گسسته‌ای به نام “فوتون” انجام می‌‌گیرد

نظریه مکملی

نظریه جدید نور شامل اصولی از تعاریف نیوتون و هویگنس است. بنابراین گفته می‌‌شود که نور خاصیت دو­گانه‌ای دارد بر خی از پدیده‌ها مثل تداخل و پراش خاصیت موجی آن را نشان می‌‌دهد و برخی دیگر مانند پدیده فتوالکتریک، پدیده کامپتون و ; با خاصیت ذره‌ای نور قابل توضیح هستند

پرتوهای دیگر

فروسرخ: پرتو فروسرخ یا مادون قرمز تابشی است الکترومغناطیسی با طول موجی طولانی­تر از نور مرئی اما کوتاهتر از تابش ریزموج. از آنجا که سرخ، رنگ نور مرئی با درازترین طول موج را تشکیل می‌دهد به این پرتو، فروسرخ یعنی پایین تر از سرخ می‌گویند.تابش فروسرخ طول موجی میان nm 700 و  nm1دارد

گاما: با توجه به اینکه اشعه گاما دارای تشعشع الکترومغناطیسی است، آن فاقد بار و جرم سکون است. اشعه گاما موجب برهم­کنشهای کولنی نمی‌گردد و لذا آنها برخلاف ذرات باردار بطور پیوسته انرژی از دست نمی‌دهند. معمولاً اشعه گاما تنها یک یا چند برهم­کنش اتفاقی با الکترونها یا هسته‌های اتم‌های ماده جذب کننده احساس می‌کند. در این برهم­کنش‌ها اشعه گاما یا بطور کامل ناپدید می‌‌گردد یا انرژی آن بطور قابل ملاحظه‌ای تغییر می‌یابد. اشعه گاما دارای بردهای مجزا نیست، به جای آن، شدت یک باری که اشعه گاما بطور پیوسته با عبور آن از میان ماده مطابق قانون نمایی جذب کاهش می‌یابد.فروپاشی گاما در فروپاشی گاما، هنگامی که یک هسته تحت گذارهایی از حالات برانگیخته بالاتر به حالات برانگیخته پایین‌تر یا حالت پایه آن می‌رود، تشعشع الکترومغناطیسی منتشر می‌گردد. معادله عمومی فروپاشی گاما بصورت زیر است

AZX<——–*AZX +

که در آنX و *X به ترتیب نشان دهنده حالت پایه (غیر برانگیخته) و حالت با انرژی بالاتر است. قابل ذکر است که این فروپاشی با هیچ گونه تغییر در عدد جرمی (A) و عدد اتمی (Z) همراه نیست

حالت برانگیخته هسته و حالت با انرژی پایین حاصل شده در اثر نشر پرتو گاما، فقط زمانی به عنوان ایزومر هسته‌ای در نظر گرفته می‌شود که نیمه عمر حالت برانگیخته به اندازه‌ای طولانی باشد که بتوان آن را به سادگی اندازه گیری نمود. زمانی که این حالت وجود داشته باشد، فروپاشی گاما به عنوان یک گذار ایزومری توصیف می‌گردد. اصطلاحات حالت نیمه پایدار یا حالت برانگیخته برای توصیف گونه‌ها در حالات انرژی بالاتر از حالت پایه نیز به کار می‌رود

حالتهای فروپاشی گاما

 نشر اشعه گامای خالص: در این حالت فروپاشی گاما، اشعه گامای منتشر شده به‌وسیله یک هسته از یک فرآیند فروپاشی گاما برای کلیه گذارها بین ترازهای انرژی که محدوده انرژی آن معمولاً از 2 کیلو الکترون ولت تا 7 میلیون الکترون ولت است، تک انرژی است. این انرژی­های گذارها بین حالت کوانتومی هسته بسیار نزدیک هستند. مقدار کمی از انرژی پس­زنی هسته با هسته دختر (هسته نهایی) همراه است، ولی این انرژی معمولاً نسبت به انرژی اشعه گاما بسیار کوچک بوده و می‌توان از آن صرف­نظر کرد

حالت فروپاشی بصورت تبدیل داخلی: در این حالت فروپاشی، هسته برانگیخته با انتقال انرژی خود به یک الکترون اوربیتال برانگیخته می‌گردد، که سپس آن الکترون از اتم دفع می‌شود. اشعه گاما منتشر نمی‌شود. بلکه محصولات این فروپاشی هسته در حالت انرژی پایین یا پایه، الکترونهای اوژه، اشعه ایکس و الکترونهای تبدیل داخلی است. الکترونهای تبدیل داخلی تک انرژی هستند. انرژی آنها معادل انرژی گذار ترازهای هسته‌ای درگیر منهای انرژی پیوندی الکترون اتمی است

با توجه به اینکه فروپاشی تبدیل داخلی منجر به ایجاد یک محل خالی در اوربیتال اتمی می‌شود، در نتیجه فرآیندهای نشر اشعه ایکس و نشر الکترون اوژه نیز رخ خواهد داد

حالت فروپاشی بصورت جفت: برای گذارهای هسته‌ای با انرژی‌های بزرگ‌تر از 102 میلیون الکترون ولت تولید جفت اگر چه غیر معمول است اما یک حالت فروپاشی محسوب می‌شود. در این فرآیند، انرژی گذرا ابتدا برای بوجود آمدن یک جفت الکترون – پوزیترون و سپس برای دفع آنها از هسته بکار می‌رود

انرژی جنبشی کل داده شده به جفت معادل اختلاف بین انرژی گذار و 102 میلیون الکترون ولت مورد نیاز برای تولید جفت است. پوزیترون تولید شده در این فرآیند نابود خواهد شد

نور و امواج الکترومغناطیس

امروزه می دانیم که نور یک موج الکترمغناطیسی است و بخش بسیار کوچکی از طیف الکترمغناطیسی را تشکیل می دهد. بنابراین برای شناخت نور بایستی به بررسی امواج الکترومغناطیسی پرداخت. اما از آنجایی­که مکانیک کلاسیک قادر به توضیح کامل امواج الکترومغناطیسی نیست، الزاماً بایستی به مکانیک کوانتوم مراجعه کرد. اما قبل از وارد شدن به مکانیک کوانتوم لازم است با برخی از خواص نور آشنا شد و دلیل نارسایی مکانیک کلاسیک را دانست. لذا در این فصل دانش نور را تا پیش از ارائه شدن رابطه­ی مشهور پلانک بررسی می­کنیم و در فصل جداگانه­ای خواص امواج الکترومغناطیسی بعد از مکانیک کوانتوم و نسبیت بررسی خواهد شد

خواص نور

نخستین مسئله­ای که مهم جلوه می­کرد این بود که نور چیست؟ از آنجایی­که عامل دیدن بود و در تاریکی چیزی دیده نمی­شد، سئوال این بود که نور چیست؟ چرا می­بینیم و نور چگونه و توسط چه چیرزی تولید می­شود؟ بالاخره این نظریه پیروز شد که نور توسط اجسام منیر نظیر خورشید و مشعل تولید می­شود. بعد از آن مسئله انعکاس نور مورد توجه قرار گرفت و اینکه چرا برخی از اجسام بهتر از سایر اجسام نور را باز تابش می کنند؟ چرا نور از برخی اجسام عبور می­کند و از برخی دیگر عبور نمی­کند؟ چرا نور علاوه بر آنکه سبب دیدن است موجب گرم شدن نیز می­شود؟ نور چگونه منتقل می­شود؟ سرعت آن چقدر است؟ و سرانجام ماهیت نور و نحوه­ی انتقال آن چیست؟

نخستین آزمایش مهم نور توسط نیوتن در سال 1666 انجام شد. وی یک دسته اشعه نور خورشید را که از شکاف باریکی وارد اتاق تاریکی شده بود، بطور مایل بر وجه یک منشور شیشه­ای مثلث القاعده­ای تابانید. این دسته هنگام ورود در شیشه منحرف شد و سپس هنگام خروج از وجه دوم منشور باز هم در همان جهت منحرف شد

نیوتن دسته اشعه خارج شده را بر یک پرده سفید انداخت. وی مشاهده کرد که به جای تشکیل یک لکه سفید نور، دسته اشعه در نوار رنگینی که به ترتیب مرکب از رنگهای سرخ، نارنجی، زرد، سبز، آبی و بنفش است پراکنده شده است. نوار رنگینی را که از مولفه­های نور تشکیل می­شود، طیف می­نامند

نیوتن نظر داد که نور از ذرات بسیار ریز -دانه­ها- تشکیل می­شود که با سرعت زیاد حرکت می­کند. علاوه بر آن به نظر نیوتن نور در محیط غلیظ باسرعت بیشتری حرکت می­کند. اگر نظر نیوتن در مورد سرعت نور درست می­بود می­بایست سرعت نور در شیشه بیشتر از هوا باشد که می­دانیم درست نیست

 هویگنس در سال 1690 رساله­ای در شرح نظریه موجی نور منتشر کرد. طبق اصل هویگنس حرکت نور به صورت موجی است و از چشمه­های نوری به تمام جهات پخش می­شود. هویگنس با به کاربردن امواج اصلی و موجک­های ثانوی قوانین بازتاب و شکست را تشریح کرد. هویگنس نظر داد که سرعت نور در محیط­های شکست دهنده کمتر از سرعت نور در هوا است که درست است

پیروزی نظریه موجی نور

 نظریه دانه­ای نیوتن هرچند بعضی از سئوالات را پاسخ می­گفت، اما باز هم پرسش­هایی وجود داشت که این نظریه نمی­توانست برای آنها جواب قانع کننده­ای ارائه دهد. مثلاً چرا ذرات نور سبز از ذرات نور زرد بیشتر منحرف می شوند؟ چرا دو دسته اشعه­ی نور می­توانند بدون آنکه بر هم اثر بگذارند، از هم بگذرند؟

اما بر اساس نظریه موجی هویگنس، دو دسته اشعه­ی نورانی می­توانند بدون آنکه مزاحمتی برای هم فراهم کنند از یکدیگر بگریزند. هویگنس نمی­دانست که نور موج عرضی است یا موج طولی و طول موج­های نور مرئی را نیز نمی­دانست. ولی چون نور در خلاء نیز منتشر می­شود، وی مجبور شد محیط یا رسانه حاملی برای انتشار این امواج در نظر بگیرد. هویگنس تصور می­کرد که این امواج توسط اتر منتقل می شوند. به نظر وی اتر محیط و مایع خیلی سبکی است و همه جا، حتی میان ذرات ماده نیز وجود دارد

نظریه هویگنس نیز بطور کامل رضایت بخش نبود، زیرا نمی­توانست توضیح دهد که چرا سایه­ی واضح تشکیل می­شود، یا چرا امواج نور نمی­توانند مانند امواج صوت از موانع بگذرند؟

نظریه­ی موجی و دانه­ای نور بیش از یکصد­سال با هم مجادله کردند، اما نظریه­ی دانه­ای نیوتن بیشتر مورد قبول واقع شده بود، زیرا از یکطرف منطقی­تر به­نظر می­رسید و از طرف دیگر با نام نیوتن همراه بود. با وجود این هر دو نظریه فاقد شواهد پشتوانه­ای قوی بودند. تا آنکه بتدریج دلایلی بر موجی بودن نور ارائه گردید

لئونارد اویلر فکر امواج دوره­ای را تکمیل کرد، همچنین دلیل رنگ­های گوناگون را مربوط به تفاوت طول موج آنها دانست و این گام بلندی بود. در سال 1800 ویلیام هرشل آزمایش بسیار ساده اما جالبی انجام داد. وی یک دسته اشعه­ی نور خورشید را از منشور عبور داد و در ماورای انتهای سرخ طیف حاصل دماسنجی نصب کرد. جیوه در دما­سنج بالا رفت، بدین ترتیب هرشل تابشی را کشف کرد که به تابش زیر قرمز مشهور شد

در همین هنگام یوهان ویلهلم ریتر انتهای دیگر طیف را کشف کرد. وی دریافت که نیترات نقره که تحت تاثیر نور آبی یا بنفش به نقره­ی فلزی تجزیه و رنگ آن تیره می­شود، اگر در ورای طیف، در جایی­که بنفش محو می­شود، نیترات نقره قرار گیرد حتی زودتر تجزیه می­شود. ریتر نوری را کشف کرد که ما اکنون آن را فوق بنفش می­نامیم. بدین ترتیب هرشل و ریتر از مرزهای طیف مرئی گذشتند و در قلمروهای جدید تابش پا نهادند. در این هنگام دلایل جدیدی برای موجی بودن نور توسط یانگ و فرنل ارائه گردید

در سال 1801 توماس یانگ دست به آزمایش بسیار مهمی زد. وی یک دسته اشعه­ی باریک نور را از دو سوراخ نزدیک بهم گذرانید و بر پرده­ای که در عقب این سوراخ نصب کرده بود تابانید. احتمال می­رفت که اگر نور از ذرات تشکیل شده باشند، محل تلاقی دو دسته اشعه­ای که از سوراخ­ها عبور کرده­اند، بر روی پرده روشن­تر از جاهای دیگر باشد. اما نتیجه­ای که یانگ به دست آورد چیزی دیگر بود. بر روی پرده یک گروه نوارهای روشن تشکیل شده بود که هر یک به وسیله­ی یک نوار تاریک از دیگری جدا می­شد. این پدیده به سهولت با نظریه موجی نور توضیح داده شد

نوار روشن نشان دهنده­ی تقویت امواج یکی از دسته­ها به وسیله­ی امواج دسته­ی دیگر است. به گفته­ی دیگر، هر جا که دو موج هم­فاز شوند، بر یکدیگر افزوده می شوند و یکدیگر را تشدید می کنند. از طرف دیگر نوارهای تاریک نشان­دهنده­ی جاهایی است که امواج در فاز مقابلند، در نتیجه یکدیگر را خنثی می کنند. اگر چه یانگ بارها تاکید کرد که برداشت­هایش ریشه در پژوهش­های نیوتن دارد، اما به سختی مورد حمله قرار گرفت و نظریات وی خالی از هر گونه ارزش تلقی شد. با این وجود یانگ طول موج های متفاوت نور مرئی را اندازه گرفت

در سال 1814 ژان فرنل بی­خبر از کوشش­های یانگ مفاهیم توصیف موجی هویگنس و اصل تداخل را با هم ترکیب کرد و اظهار داشت: ارتعاشات یک موج درخشان را در هر یک از نقاط آن می­توان به عنوان مجموع حرکت­های بنیادی دانست که به آن نقطه می­رسند. بر اثر انتقادهای شدید طرفداران نیوتن، فرنل تاکیدی ریاضی یافت. وی توانست نقش­های پراش ناشی از موانع و روزنه­های گوناگون را محاسبه کند و به طور رضایت بخشی انتشار مستقیم نور را در محیط­های همسان­گرد و همگن توضیح دهد. بدین­سان انتقاد عمده­ی طرفداران نیوتن را نسبت به نظریه موجی بی­اثر کند. هنگامیکه فرنل به تقدم یانگ در اصل تداخل پی­برد، هرچند اندکی مایوس شد، اما نامه­ای به یانگ نوشت و احساس آرامش خود را از هم رای بودن با او ابراز داشت

قبل از ادامه­ی بحث در مورد کارهای فرنل لازم است موج طولی و موج عرضی را تعریف کنیم. در موج طولی جهت انتشار با جهت ارتعاش یکی هستند. نظیر نوسان یک فنر. اما در موج عرضی جهت ارتعاش بر جهت انتشار عمود است، نظیر موج بر سطح آب که نوسان و انتشار عمود بر هم هستند

فرنل تصور می­کرد امواج نور، امواج طولی هستند. اما تصور موج طولی نمی­توانست خاصیت قطبش نور را توجیه کند. فرنل و یانگ چندین سال با این مسئله درگیر بودند تا سرانجام یانگ اظهار داشت که ممکن است ارتعاش اتری همانند موجی در یک ریسمان عرضی باشد. ولی امواج عرضی انها در یک محیط مادی منتقل شوند. از طرفی دیگر با توجه به سرعت نور (که در آن­زمان مقدار آن را نمی­دانستند ولی می­دانستند که فوق العاده زیاد است)، اتر نمی­توانست گاز یا مایع باشد و باید جامد و در عین حال خیلی صلب باشد حتی می­بایست صلب­تر از فولاد باشد. از این گذشته اتر می­بایست در تمام مواد نفوذ کند، یعنی نه تنها در فضا، بلکه باید در بتواند گازها، آب، شیشه و حتی در چشم­ها نفوذ کند، زیرا نور وارد چشم نیز می­شود. علاوه بر این اتر نبایستی هیچ­گونه اصطکاکی داشته باشد و مانع بهم خوردن پلک­ها گردد. با وجود این با تمام مشکلاتی که اتر داشت برای توجیه موجی بودن نور مورد قبول واقع شد. بدین ترتیب در سال 1825 نظریه موجی نور مورد قبول واقع شد و نظریه دانه­ای نیوتن طرفداران چندانی نداشت

ماکس کارل ارنست لودویگ پلانک

ماکس کارل ارنست لودویگ پلانک (23 آوریل 1858 – 4 اکتبر 1947) یکی از مهم‌ترین فیزیک‌دانان آلمان در سده 19 میلادی و اوایل سده 20 بود. او را «پدر نظریه کوانتوم» می‌شناسند

زندگی

در 23 آوریل سال 1858 در شهر کیل آلمان زاده شد وی فرزند ششم ویلهلم پلانک استاد علوم قضایی دانشگاه شهر بود افراد خانواده پلانک احترام زیادی برای آموزش و پرورش و فرهنگ و حفظ ارزشهای سنتی خانواده قائل بودند والدین همه­ی آن خصوصیات را به فرزند انتقال داده بودند نامه‌های پلانک گوشه‌ای از زندگی خانواده­اش را بازگو می­کنند که در آنها سخن از گذرانیدن تابستان در تفرجگاه الدنای کنار دریای بالتیک و بازی کروکه روی چمن و از خواندن رمانهای والتر اسکات در هنگام شب و از به روی صحنه آوردن نمایش و موسیقی با شرکت افراد خانواده زیاد به میان می‌‌آید پلانک دوره دبیرستان را در گیمنازیوم مکسیمیلان شهر مونیخ گذرانید و در آنجا بود که به علاقه خود به علوم پی­برد پلانک اعتبار و امتیاز تفهیم معنای قوانین فیزیک به خود برای اولین بار را به هرمان مولر دبیر ریاضی خویش می‌‌دهد

پلانک یک تیزهوش استثنایی نبود دبیرانش در گیمنازیوم از لحاظ رتبه او را به شاگرد اولی نزدیک می‌‌دانستند اما او را در هیچ زمانی شاگرد اول نشناختند معلمان وی در او جز رفتار شخصی خوب و سختکوشی در کار نشانه‌ای که حاکی از تابناکی هوش یا وجود استعداد خاصی باشد، ندیدند

به هر حال مهارتهای او در برخوردهای اجتماعی باید از گونه تراز اولی بوده باشد چرا که محبوب معلمان و همکلاسان خود بود. پلانک در پایان دوره گیمنازیوم خود در سال 1874 هنوز تصمیمی در زمینه انتخاب رشته برای آموزشهای بعدی خود نگرفته بود تا اینکه سرانجام ابتدا دانشجوی دوره کارشناسی دانشگاه مونیخ و چندی بعد دانشجوی آن دوره دانشگاه برلین شد وی به خواندن فیزیک عملی و ریاضیات پرداخت و در پی انتقال به دانشگاه برلین در کلاسهای فیزیکدانان مشهور آن روز هرمان فن هلمهولتز و گوستاو کی­یرشهوف شرکت کرد پلانک علاقه خویش به ترمودینامیک را مدیون این دو استاد می‌‌دانست

پلانک نظریه مکانیکی گرمای کلاوزیوس را به تفضیل مطالعه کرد و بعدها خاطر نشان ساخت که این مطالعه خصوصی چیزی بود که سرانجام وی را به فیزیک کشانید پلانک که تحت تأثیر کار و روشنی روش استدلال کلاوزیوس قرار گرفته بود رشته اصلی درس خود را ترمودینامیک انتخاب و بررسی در قانون دوم آن را موضوع تز دکترای سال 1879 خویش در دانشگاه مونیخ کرد. تز دکترای پلانک مروری بر دو اصل کلاسیک ترمودینامیک بود اصل اول، اصل بقای انرژی و اصل دوم مفهوم انتروپی (کمیتی که اندازه­اش در تمام فرآیندهای فیزیکی حقیقی مدام در افزایش است) افکار پلانک در باره انتروپی و آزمایشهای پیشنهادی او در آن­باره هیچکدام از راهنمایان دانشگاهی ممتاز او را تحت تأثیر قرار نداد استاد هلمهولتز او را اصلاٌ نخواند و کی­یرشهوف هم آن را نخواند از آن خوشش نیامد حتی کلاوزیوس که منبع الهام او بود کمترین علاقه‌ای به موضوع نشان نداد. پلانک با آن واکنش استادان نسبت به پایان­نامه­ی دکترای خود با وقار و آرامش برخورد کرد و با اشتیاقی حتی بیش از پیش به کار برگشت. فارغ التحصیل شدن وی به سبب بیماری­اش با دو سال تأخیر همراه بود اما درجه دکترایی که سرانجام در سال 1879 گرفت با رتبه ممتاز بود

پلانک در سال 1880 با سمت دانشیاری به هیأت علمی دانشگاه مونیخ پیوست و 5 سال پس از آن به مقام استادی دانشگاه کیل رسید استخدام به عنوان استاد غیر رسمی در دانشگاه کیل پلانک را به استفاده از استقلال علمی بیشتری برخوردار ساخت گوستاو کی­یرشهوف استاد راهنمای قدیمی پلانک در سال 1889 در گذشت و کرسی استادی او در دانشگاه برلین خالی ماند و پلانک به جای کی­یرشهوف به عنوان استاد­یار و مدیر مؤسسه فیزیک نظری منصوب شد. پلانک در یکی از روزها که به یاد نداشته است در چه کلاسی از دانشگاه برلین درس دارد جلوی اتاق دفتر بخش ایستاده و از کارمندی نشانی محل برگزاری درس آن روز پروفسور پلانک را جویا می‌‌شود کارمند در جواب می‌‌گوید: آنجا مرو مرد جوان تو بسیار جوان­تر از آن هستی که بتوانی درس پلانک، استاد فرهیخته ما را بفهمی

پلانک در پی استقرار در کرسی استادی خویش توجه خود را معطوف پدیده تابش جسم سیاه مشکل روز فیزیک کلاسیک کرد که آن را نخستین بار کی­یرشهوف به میان آورده بود. پلانک در سال 1900 به این نتیجه رسید که برای توضیح پدیده تابش جسم سیاه باید ایده کاملاً‌ جدیدی را پیش بکشد. وی این فکر را در میان نهاد که انرژی نیز مانند مادّه از آحاد یا بسته‌های کوچکی درست شده است. او آن آحاد را کوانتوم نام داد که کلمه‌ای مأخوذ از زبان لاتینی به معنی چقدر و جمع آن کوانتا بود، این فکر که با اصول و قوانین آن زمان وفق نمی‌کرد بالطبع مخالفانی بوجود آورد ولی این مخالفتها بیش از 5 سال طول نکشید زیرا تئوری انیشتین که متکی به تئوری کوانتا بیان شد ارزش واقعی و حقیقی تئوری بیان شده به‌وسیله پلانک را معلوم نمود بعد از آن پلانک و انیشتین با یکدیگر مکاتباتی آغاز کردند که تا پایان عمر پلانک ادامه یافت و سبب همکاری­های مهمی بین آنها در زمینه­ی خواص نور نیز شد

سهمی که پلانک در پیشبرد علم ادا کرد او را دانشمند دانشمندان کرد. او مورد احترام همکاران خود در همه­ی حوزه­های علمی و از همه ملیت­های جهان بود. در سال 1918 که جایزه نوبل در فیزیک اعطاء می‌‌شد، آلبرت انیشتین، نیلز بوهر، ارنست رادرفورد و ورنر هایزنبرگ – که همه می‌‌توانستند خود مستحق کسب آن افتخار باشند – مناسبت را با توافق بدون شرط خویش تاریخی کرده و مستحق‌ترین شخص برای جایزه را پلانک دانستند بدین ترتیب پلانک به اخذ جایزه نوبل نائل آمد و استاد دانشگاه برلین گردید. همچنین شاهد تأسیس انجمن ماکس پلانک برای پیشبرد علم به جای انجمن قیصر ویلهلم که در سال 1911 پی افکنده شده بود گردید، خود او (از سال 1930 تا 1937) ریاست این انجمن را بر عهده داشت

پلاک در روز 4 اکتبر 1947 در 92 سالگی در پی یک حمله قلبی درگذشت تاریخ او را به پاس دو کشف عمده اش به یاد خواهد داشت: کشف نظریه کوانتومی و کشف آلبرت انیشتین (انیشتین در سال 1948 در ستایشنامه‌ای که عنوان آن در رثاء ماکس پلانک بود چنین نوشت: انسان‌های زیادی عمر خود را وقف علم می­کنند اما آنها همه به خاطر خود علم آن کار را نمی­کنند عده‌ای برای آن معبد علم می‌‌آیند که علم به آنها بروز فرصت استعدادهای ویژه­شان را می‌‌دهد برای این گروه علم گونه‌ای ورزش است که آنها از تمرین در آن به وجد می‌‌آیند مانند آن ورزشکاری که تمرین دادن به ماهیچه‌های قوی خود شاد می‌‌شود گروه دیگری از انسان‌ها به معبد علم برای عرضه توده مغز خود می‌‌آیند به آن امید که از آن کار بازده مفیدی بیندوزند. این عده تنها از آن رو سر از کار علمی در می‌‌آورند که شرایط گزینش حرفه انتخابی را به حسب اتفاق پیش روی آنها نهاده است اگر شرایط حاکم بر آن گزینش به گونه دیگری بود، آنها ممکن بود سیاستمدار یا مدبر تجاری بشوند چنانچه پیش آید که خدا فرشته‌ای از فرشتگان خود را برای بیرون راندن گروههایی که نام بردیم از معبد به پایین بفرستد، بیم آن دارم که معبد از بن خالی شود. با این حال هنوز شمار اندکی از عابدان در آن باقی خواهند ماند برخی از زمانهای گذشته و برخی از عصر خود ما. پلانک ما جای در گروه اخیر دارد و از این روست که ما همه او را دوست داریم)

پراش نور

 

برای دریافت پروژه اینجا کلیک کنید


کلمات کلیدی :

کارآموزی چوب چوکا تحت فایل ورد (word)

ارسال‌کننده : علی در : 94/12/29 3:53 صبح

 

برای دریافت پروژه اینجا کلیک کنید

  کارآموزی چوب چوکا تحت فایل ورد (word) دارای 46 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد کارآموزی چوب چوکا تحت فایل ورد (word)   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه کارآموزی چوب چوکا تحت فایل ورد (word)

مقدمه 
تاریخچه صنایع چوب وکاغذ 
صنایع چوب 
واحد تخته چند لائی 
واحد چوب بری 
واحد آماده سازی 
صنایع کاغذ 
واحد تولید خمیر وتهیه مایع پخت 
1-1- قسمت انتقال خرده چوب 
1-2- قسمت برج پخت 
1-3-  قسمت بازیابی مواد قلیایی: 
2 واحد نیرو وبازیابی مواد شیمیایی 
3 واحد تصفیه آب فاضلاب 
4 واحد تولید کاغذ 
1-4- قسمت آماده سازی خمیر ومواد افزودنی: 
2-4- ماشین کاغذ: 
5 واحد تکنیکال 
واحد مهندسی و امور سرویس‌ها 
شهرک مسکونی کارکنان 
گزارش کار: 
گزارش تصفیه اولیه وچگونگی حذف یونهای مزاحم در T.H 
گزارش تصفیه ثانویه وچگونگی افزایش عمررزینها 
خواص فیزیکی: 
خواص شیمیایی: 
اندازه گیری سختی آب درآزمایشگاه تصفیه 
آلوده کنندهای معدنی وغیرفلزی: 
کنداکتیویته آب: 
روشهای تصفیه آب درچوکا: 
بررسی سیستم تصفیه آب در چوکا: 
سیستم پمپ خانه شفارود 
مواد شیمیایی مورد استفاده درتصفیه اولیه 
سیستم جمع آوری لجن اته کلاریفایر: 
تستهایی که در تصفیه اولیه به کار می‌رود 
تعیین اندازه گیری سختی آب: 
قلیائیت آب: 
آزمایش باقیمانده سولفیت 
آزمایشهای سود سازی وبازیابی مواد شیمیایی 
مقدمه: 
روش انجام آزمایش 
آزمایش از لکیور سفید: 
تعیین درصد CaO درآهک پخته 
تعیین درصد سود جامد: 
آماده سازی خمیر 
مقدمه 
محاسبه درصد خشکی 
اندازه‌گیری کاپا: 
آزمایشگاه تحقیقات محلول‌سازی 
قسمت محلولسازی: 
استاندارد کردن: 
1 از روی استاندارد اولیه: 
2 به صورت تیترازول: 
3 مقدار توزین شده ای ازاستاندارد ثانویه ای: 
روش تهیه محلولها: 
1 مایع از مایع: 
2 مایع درجامد: 
3 تهیه محلول بانرمالیته پایین از محلول با نرمالیته بالا: 
4 نسبت حجم محلول به حجم رقیق کننده: 
5 تهیه محلولهای چند درصدی: 
محلولهای بافر: 
معرفها: 
اسامی بعضی محلولها: 
منابع : 

بخشی از منابع و مراجع پروژه کارآموزی چوب چوکا تحت فایل ورد (word)

1 . تصفیه آبهای صنعتی  :  گردآورنده محمد چالکش امیری

 2 . تصفیه آبهای صنعتی : تالیف مهندس مرتضی حسینیان

مقدمه

تاریخچه صنایع چوب وکاغذ

صنایع چوب وکاغذ ایران در75 کیلومتری شمال غربی رشت ودر35 کیلومتری جاده انزلی تالش ودرکنارجنگل‌های وسیع شمال کشورقراردارد. این کارخانه درسال 1352 با مشارکت به سازمان گسترش ونوسازی صنایع ایران (60% سهام) ووزارت کشاورزی وعمران روستائی(40 %) بازیربنای 51400 متر مربع ودرزمینی به مساحت حدود 100 هکتار به منظور ایجاد و بهره برداری ازکارخانجات چوب وکاغذ وواحدهای تولیدی خدماتی وابسته به آن وهمچنین احیاء وبهره برداری ازجنگل‌های استان گیلان تأسیس گردید. دراواسط سال1357 شروع به بهره برداری آزمایشی نمود ودرآخر سال 1364 تحت پوشش سازمان صنایع ملی ایران قرار گرفت

دراوایل سال1365 بخش جنگل چوکاازشرکت متنزع وبه شرکت مستقلی به نام شرکت جنگل شفارود وابسته به وزارت کشاورزی گردید وهمچنین واحدصنایع ملی قرارگرفت. براساس برنامه ریزی‌های به عمل آمده تأمین چوب موردنیازصنعت می بایست از400 هزار هکتارجنگل‌های منطقه گیلان ازسفیدرود تاآستارا تأمین گردد

صنایع چوب وکاغذایران “چوکا” ازدوواحد صنایع کاغذ تشکیل شده است. چوبهای مورد مصرف پس ازقطع ازجنگل توسط کامیون‌ها وتریلرها به یارد (انبارگرده بینه)حمل می شود. چوب‌های جنگلی موردمصرف اغلب عبارتند از ممرز- راش – بلوط – صنوبر- انجیلی خرمندی وافرا

درابتدای امرلازم به ذکراست که گفته شود کاغذ درابتدا چگونه وبرای چه به وجودآمده است.اگرزمانهای گذشته راتداعی کنیم یعنی زمانهای بابلی عاشوری آنها برای نوشتن با حکاکی کردن برروی پوست را یادگرفتند که این امرتوسط ایرانیان باستان برروی پوست حیوانات آغاز گردید. طبق گزارشات اولین نوشته 4964 سال قبل ازمیلادبرروی سفال انجام شده است

حال کلمه کاغذرا بازگومی کنیم.درزبان انگلیسی Paper وآلمانی Papier نام داردکه ازکلمه پاپیروس نام یک گیاه درسواحل رودنیل به فراوانی می روید. حدود 3000 سال قبل ازمیلادمصریها گیاه پاپیروس رابرای تحریربه کارمی برندودرآن هنگام هم ازمواد دیگر از قبیل خشت – سفال – سنگ – فلزات- استخوان- عاج فیل وپوست درختان- برگ خرما – پوست گاو – گوساله- گوسفند – بزوآهواستفاده می شد

درزمانهای قدیم لایه‌های الیافی داخل پاپیروس رادرمی آوردند ودرکنارهم بطورعمودی قرارمیدهند و الیافهای دیگربطور افقی روی آن میگذاشتند وباعبور یکی درمیان چند ردیف راباهم می بافتند که به یک شکل صفحه ای ساخته می شد وآنرا تحت فشارقرارمی دادند تا صاف گردد. بااستفاده ازموادچسبنده صفحه خشک وبدون شیارمی گردد. اولین بارساخت کاغذ به وسیله چینی‌ها درسال 105 میلادی انجام گرفت ودرسال 304 میلادی چینی‌ها اولین کارخانه کاغذسازی را درسمرقند احداث کردند. جنگلهای بین ایران واعراب که به پیروزی اعراب انجامید منجر به شناخت اعراب ازاین صنعت واحداث کارخانه شد. پس این صنعت به وسیله فلسطینی وبالاخره به ایتالیا واسپانیا راه یافت. درکشورچین کاغذازبرگ توت تهیه کردن و4 مرحله روی آن انجام دادند

1 خیساندن درآب ازطریق جوشاندن

2 آبگیری

3 فشاردادن وشکل دادن

4 خشک کردن ازطریق نوردرقرن 19 تقریبأ تمام دستگاههای استاندارد کارخانه کاغذ سازی توسعه پیدا کرده که ابتدا ازتکه‌های کهنه پارچه برای ساخت کاغذ استفاده می شد. تا اینکه درسال 1850 تلاش برای ساختن الیاف کوتاه نساجی بجای درچوب مورد استفاده قرار گرفت

 صنایع چوب

چوبها پس ازحمل به کیفیت وجایگاه مصرف آنها به سه دسته تقسیم میشود. چو‌ب‌های با کیفیت بالا (درجه یک) به واحد تخته چندلائی چوب‌های متوسط (درجه دو) باواحد چوب بری وبالاخره چوب‌های باکیفیت پایین (درجه سه) وخارج درجه جهت تولید چیپس در واحد آماده سازی مصرف میشود

ظرفیت یارد برای گرده بینه‌های کوته وکم قطر (بین 20/1 تا 40/2 متر طول و حداکثر 50 سانتی متر قطر)180000 مترمکعب درسال وبرای گرده بینه‌های بلند وقطور (بین 40/2 تا 15 مترطول وتا بیش از5/0 متر قطر) 340000 مترمکعب درسال می باشد

واحد تخته چند لائی

این کارخانه باظرفیت تولید سالانه 6640 مترمکعب انواع تخته لایه‌های سه لا- پنج لا- هفت لا- نه لا ویازده لا را تولید مکعب می کند. راندمان تولید این واحد 43% ومیزان چوب مصرفی 15000 متر مکعب گرده بینه در سال می باشد. شروع بهره برداری آن سال 1356 و مواد مصرفی این کارخانه شامل گرده بینه درجه 1و2 – چسب اوره فرم آلدئید – چسب فنل فرم آلدئید – آرد گندم – کاتالیزور واسید‌هاردنر است

واحد چوب بری

این واحد از چندین دستگاه اره مخصوص جهت تبدیل گرده بینه‌ها به انواع چوب آلات ساختمانی با ابعاد مورد نیاز بازار مصرف تشکیل شده است. تولیدات این کارخانه شامل انواع چوب آلات ساختمانی از قبیل تراورس – واشان – تخته وغیره با ظرفیت اسمی سالیانه 52000 متر مکعب وراندمان بهره وری 52 % است. شروع بهره برداری آن درسال 1356 ومیزان مصرف چوب این واحد طبق طراحی می بایست 100000 مترمکعب در سال باشد

 

واحد آماده سازی

این واحد خرده چوب (چیپس) موردنیاز کارخانه خمیرکاغذراتأمین می نماید که دارای دو دستگاه چیپر بزرگ وچیپر کوچک می باشد طبق طراحی ظرفیت چیپر بزرگ 70 متر مکعب در ساعت خرده چوب خشک وظرفیت چیپر کوچک 126 متر مکعب در ساعت خرده چوب می باشد. ابعاد نرمال چیپس مورد مصرف اینچ وضخامت آن 8/1 اینچ است

صنایع کاغذ

صنایع کاغذ شامل واحد‌های زیر می باشد

1 تولید خمیر وتهیه مایع پخت

2 واحد تولید کاغذ ومواد افزودنی

3 واحد نیرو و بخار وبازیابی مواد شیمیایی

4 واحد تصفیه آب وفاضلاب

ظرفیت اسمی کارخانجات کاغذ 500 تن درروز کاغذ کنگره ای فلوتینگ روکش کارتن (لاینر) و مقوا (بورد) ویا358 تن کاغذ بسته بندی را پینگ می باشد. طبق طراحی قریب 80 % خمیر کاغذ ازدرختان پهن برگ محلی مانند راش – ممرزوتوسکا وبلوط تهیه شده و 20 % مابقی الیاف آن ازدرختان سوزنی برگ خریداری شده ازخارج تهیه می گردد. تهیه خمیر به طریقه کرافت (سولفات) بوده که امروزه ازمتداولترین روش‌های سخت می باشد

طراحی کارخانجات کاغذ “چوکا” توسط شرکت استدلر هرتر ازکشور کانادا بوده وماشین آلات آن ساخت کشورهای کانادا – آمریکا – سوئد وتعدادی مخازن ساخت داخلی می باشد. حدود 30 نوع مواد شیمیایی دراین صنعت مصرف می شود که تعدادی ازآنها در داخل کشور و بقیه ازخارج وارد می‌گردد

واحد تولید خمیر وتهیه مایع پخت

واحد خمیر از بخش‌های زیر تشکیل میگردد

1-1- قسمت انتقال خرده چوب

این قسمت شامل دوانبار خرده چوب (چیپس) است که چیپر‌ها دریافت می شود ظرفیت هر یک ازاین انبارها معادل 5000 تن خرده چوب مغز خشک است که در ظرفیت‌های نهایی کارخانه قادر است تغذیه 10 روز مداوم واحد خمیر را تأمین کند خرده چوب ازاین قسمت توسط نواله‌های هیدرولیکی ونواری به کمک هوای فشرده ازطریق تغذیه کننده به واحد خمیر کاغذ فرستاده می شود

1-2- قسمت برج پخت

چوب خشک ازسه قسمت عمده شامل سلولز (الیاف) همی سلولز (کربوهیدرات‌ها) ولیگنین تشکیل شده است لیگنین بین الیاف قرار داشته وآنها رابه یکدیگر چسبانیده است ودرضمن حالتی چوبی آنرا موجب می شود درصنعت کاغذ سازی فقط از الیاف وبخشی از همی سلولز چوب استفاده می شود لذا بایستی الیاف را از لیگنین موجود درچوب به طریقی جدانمود تاقابل استفاده جهت این صنعت باشد. بطور کلی مقدارلیگنین موجود درچوبهای ایران حدود 20 تا35 % ازکل چوب را تشکیل می‌دهد

برج پخت چوکا ساخت شرکت آمریکایی کمیر (Kamyr) است خرده چوب ازپایل مربوطه به مخزن پیش بخار جهت آماس خوری وهواگیری انتقال یافته واز آنجا پس از توزین به همراه مایع پخت (مخلوطی از40% NaOH و 30% Na2S) بنام لیکورسفید که در آنجا تحت 7 اتمسفر و170 درجه سانتی گراد عمل جداسازی مواد لینگنینی ازالیاف انجام می گیرد والیاف ازپایین برج پخت جهت پالایش وتهیه خمیراستخراج می شود

درخاتمه عمل پخت – لیکورسفید به لیکور سیاه مبدل میشود که شامل مقدار زیادی لینگین ومواد شیمیایی مصرف شده می باشد. این لیکور به ریکاوری بویلر فرستاده شده که درآنجا از سوختن لینگین واستفاده ازانرژی حرارتی آن مقداری ازبخار مورد نیاز کارخانه تأمین می شود ودرضمن قسمتی ازمواد شیمیایی ومعدنی بصورت مذاب درآمده ونهایتأ درقسمت بازیابی مواد قلیایی کاملأ به حالت لیکور سفید اولیه برگردانده می شود

برج پخت با ارتفاع 8/44 مترشامل سه ناحیه است که از یکدیگرجدانبوده وازبلا به پایین ترتیب عبارتند از

ناحیه آماس وحرارت دهی
ناحیه پخت
ناحیه شستشوی خمیر

کل زمان حرارت دهی وپخت وشستشو حدود7 ساعت است که حدود 3ساعت مربوط به ناحیه پخت می باشد. تکه چوب‌های پخته شده پس ازعبورازدیفایبراتورها رشته رشته شده وپس ازعبورازپرس دوقلوبادرصد خشکی بالا جهت پالایش وارد سه پالاینده (ریفاینر) که به طور موازی قرارگرفته اند می شود. خمیرپالایش شده پس از خروج پالاینده‌ها توسط پمپ مخصوص به مخازن ذخیره خمیر (تاور) هرکدام به ظرفیت 2680 مترمکعب جهت تولید کاغذ فرستاده می شود

1-3-  قسمت بازیابی مواد قلیایی

لیکورسیاه تولیدی دربرج پخت باماده شیمیایی سولفات سدیم (Na2So4) که اصطلاحاً سالت کیک گفته می شود. مخلوط گردیده وپس ازسوختن درمولد بخار وبازیابی به صورت توده مذاب درآب حل شده ومخلوط سبزرنگی به لیکورسبزکه قسمت اعظم آن شامل کربنات سدیم است راتولید می کند. لیکورسبزباآهک پخته (CaO) حاصل ازکوره آهک پزی ترکیب شده وماده اصلی پخت چوب (لیکورسفید) تولید ولجن آهک تشکیل شده مجددأ به کوره آهک ارسال می شود

Cao + H2O          Ca(OH)2

Ca(OH)2 + Na2S کم اثر

Ca(OH)2 + Na2CO3                2NaOH + CaCO3

2. واحد نیرو وبازیابی مواد شیمیایی

 

برای دریافت پروژه اینجا کلیک کنید


کلمات کلیدی :

مقاله انگلیسی ده فایده سازمان تجارت جهانی با ترجمه فارسی تحت فای

ارسال‌کننده : علی در : 94/12/29 3:52 صبح


برای دریافت پروژه اینجا کلیک کنید

  مقاله انگلیسی ده فایده سازمان تجارت جهانی با ترجمه فارسی تحت فایل ورد (word) دارای 20 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله انگلیسی ده فایده سازمان تجارت جهانی با ترجمه فارسی تحت فایل ورد (word)   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

WORLD TRADE ORGANIZATION

ده فایده سازمان تجارت جهانی

جهان پیچیده است و ما سعی کرده ایم که در اینجا، فقط طبیعت پیچیده وپویای تجارت را منعکس نمائیم. به طور اختصار بر برخی مزایای سیستم تجاری WTO تاکید کرده ایم ولی ادعا نمی کنیم که همه چیز در اینجا کامل وبی عیب است زیرا درغیر اینصورت مذاکرات بیشتری درجهت اصلاح سیستم صورت نمی گرفت. همچنین ادعا نمیکنیم که همه تمام اجزاء WTO  را قبول دارند که این خود شاید دلیلی برای ماندگاری سیستم باشد. دراینجا کشورها گردهم چمع می شوند تا اختلافات تجاری خود را حل و فصل کنند

دلایل قانع کننده بسیاری برای برپائی و ماندگاری سیستم موجود است که دراینجا ده مورد آن ذکر و بحث میشود

1- این سیستم به حفظ و ارتقاء صلح کمک میکند

2- مناقشات و اختلافات به طریقه ای سودمند مشکل گشائی میشوند

3- رعایت قوانین، زندگی را برای همه آسانتر می سازد

4- تجارت آزادتر، هزینه های زندگی را کم میکند

5- حق انتخاب کالاها بیشتر شده و کیفیتها بالاتر می رود

6- تجارت، درآمدها را افزایش می دهد

7- تجارت، رشد اقتصادی را افزایش می دهد

8- قوانین و ضوابط پایه ای، زندگی را آسانتر می کنند

9- دولت ها در برابر اعمال نفوذهای شخصی و گروهی محافظت می شوند

10- این سیستم دولتهای شایسته و خوب را ارج می دهد و تشویق میکند

 

1- این سیستم به حفظ صلح جهانی کمک می کند

شاید این ادعایی بزرگ بنظر رسد و نمی توان فقط بر آن تکیه کرد، اما این سیستم به برقراری صلح جهانی یاری میرساند و اگر دلیل آنرا بدانیم تصویر واضحتری از کاری که سیستمWTO واقعا انجام می دهد خواهیم داشت 

صلح تقریبا نتیجه دو اصل اساسی تجارت است
- جریان یافتن تجارت به صورت روان
- فراهم آوردن بستری عادلانه و سازنده برای حل و فصل اختلاف تجاری کشورها

تاریخ پر از جنگهایی است که براثر مناقشات تجاری ایجاد شده اند یکی از مشخصترین مثالها، جنگ دهه 1930است که کشورها به منظور حمایت از تولیدکنندگان داخلی، از واردات خارجی جلوگیری کردند وتلاقی سیاستهای گوناگونی که کشورهای مختلف در این مورد اتخاذ می کردند رکود اقتصادی اوایل ده 1930 را وخیم تر کرد و سرانجام منجر به آغاز جنگ جهانی دوم شد

بلافاصله پس از جنگ، دو رویداد مهم به جلوگیری از تکرار تنش کمک کرد : در اروپا، همکاری بین المللی در GATTمورد ذغال سنگ ، آهن و فولاد گسترش یافت و موافقت نامه عمومی تعرفه و تجارت موسوم به (General Agreement on Tarrifs and Trade) در سطح جهان ایجاد شد

هردو این دو رویداد به قدری موفقیت آمیز بودند که امروزه به صورت قابل توجهی گسترش یافته اند ، اولی به اتحادیه اروپا تبدیل شده است و دومی به سازمان تجارت جهانی(WTO)


 WTO چگونه عمل می کند ؟

 

بایستی خاطر نشان کنیم در معاملات و تجارت، معمولا فروشندگان  مایل به جرو بحث با مشتریان خود نیستند به عبارت دیگر، اگر تجارت راحت و بی دردسر جریان داشته باشد و هر دو طرف از یک رابطه تجاری سالم لذت ببرند احتمال چالش سیاسی کمتر خواهد بود. به علاوه تجارت روان ، به بالا بردن سطح رفاه اقتصادی تمام مردم  کمک میکند، و کسانی که پولدارتر و راضی تر هستند کمتر تمایل به جروبحث و دعوا دارند

اما این همه قضیه نیست، جنگهای تجاری ده 1930 گواه براین هستند که چگونه سیاست حمایت از صنایع داخلی می تواند به راحتی کشورها را در وضعیتی قرار دهد که برنده ای نداشته باشیم و همه ببازند .نگرش بستن درها بر روی واردات برخی کالاها برای حمایت از صنایع داخلی کوته فکرانه است چرا که این روش ، واکنش و پاسخ کشورهای دیگر را نادیده انگاشته است . واقعیت این است که در درازمدت حتی یک قدم بسوی حمایت از صنایع داخلی ، بسادگی میتواند مشکلات دیگری را بوجود آورد از قبیل

اقدامی متقابل از سوی سایر کشورها ، ازبین رفتن اطمینان درتجارت آزاد، گامی بسوی ایجاد مشکلات اقتصادی، (حتی برای بخشهایی که در ابتدا حمایت و محافظت شدند ) ،شرایطی که در آن همه ضرر خواهند کرد

اطمینان کلید جلوگیری از ایجاد این سناریوی بدون برد است و سیستم GATT/WTO این اطمینان را ایجاد میکند. اگر دولتها مطمئن باشند که سایرین موانع واردات تجاری خود را علم نخواهند کرد آنان نیز به انجام چنین کاری ترغیب نخواهند شد . همچنین همه در یک قالب فکری بهتری برای همکاری بیشتر قرار خواهند گرفت

سیستم تجاری WTO نقشی حیاتی در خلق و تقویت این اطمینان بازی می کند ، مذاکراتی که به    موافقت نامه های تجاری عمومی منجر شوند و وفاداری به این موافقت نامه ها و قوانین از اهمیت خاصی برخوردار است

The world is complex. This booklet is brief, but it tries to reflect the complex and dynamic nature of trade. It highlights some of the benefits of the WTO’s ““trading system, but it doesn’t claim that everything is perfect—otherwise there would be no need for further negotiations and for the system to evolve and reform continually. Nor does it claim that everyone agrees with everything in the WTO. That’s one of the most important reasons for having the system: it’s a forum for countries to thrash out their differences on trade issues. That said, there are many over-riding reasons why we’re better off with the system than without it. Here are 10 of them

The 10 benefits 1. The system helps promote peace 2. Disputes are handled constructively 3. Rules make life easier for all 4. Freer trade cuts the costs of living 5. It provides more choice of products and qualities 6. Trade raises incomes 7. Trade stimulates economic growth 8. The basic principles make life more efficient 9. Governments are shielded from lobbying 10. The system encourages good government

 

برای دریافت پروژه اینجا کلیک کنید


کلمات کلیدی :

مقاله خواص اپتیکی مواد تحت فایل ورد (word)

ارسال‌کننده : علی در : 94/12/29 3:52 صبح

 

برای دریافت پروژه اینجا کلیک کنید

  مقاله خواص اپتیکی مواد تحت فایل ورد (word) دارای 49 صفحه می باشد و دارای تنظیمات و فهرست کامل در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله خواص اپتیکی مواد تحت فایل ورد (word)   کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه  و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : توضیحات زیر بخشی از متن اصلی می باشد که بدون قالب و فرمت بندی کپی شده است

 

بخشی از فهرست مطالب پروژه مقاله خواص اپتیکی مواد تحت فایل ورد (word)

مقدمه:  
مرز:  
ضخامت:  
تک لایه ای ضد بازتاب:  
طراحی ضد بازتاب دو لایه ای:  
سه لایه ای های ضد بازتاب:  
متد محاسبه کارائی یک چند لایه ای:  
لایه های برابر:  
آینه های بازتاب زیاد High Reflectance:  
فیلترهای لبه Edge Filters:  
- فیلترهای جذبی (لایه نازک):  
- فیلترهای لبه تداخلی:  
- چند لایه ای های متقارن:  
- خلاصه روش طراحی فیلتر لبه:  
- فیلترهای کنترل حرارت:  
- تیغه های جدا کننده نور (Beam Splitters):  
فیلترهای با باند عبور Band-Pass Filters:  
2-2- فیلتر فابری پرو – تمام دی الکتریک:  
- فیلترهای چند حفره ای (چند لایه میانی):  
ساخت پوششهای چند لایه:  
1- لایه نشانی شیمیایی:  
2- پراکنش:  
3- تبخیر در خلاء:  
مواد پوشش دهنده:  
1- خواص اپتیکی:  
2- خواص فیزیکی:  
3- شفافیت عبور:  
فهرست منابع و مآخذ:  

مقدمه

بمنظور آشنائی با خواص اپتیکی مواد (رسانا و غیر رسانا) میبایست میدان الکتریکی E و میدان مغناطیسی B را در مواد بررسی نمود یا در واقع به عنوان محیط موجبری که انرژی یا موجی را انتقال میدهد مورد کنکاش قرار داد. لذا می بایستی که بحث الکترومغناطیسی را بعنوان زیربنا و ساختار لایه های اپتیکی مورد استفاده قرار داد از آنجاییکه عنوان پروژه طراحی فیلترهای نوری میباشد لذا ما فرض میگیریم که خواننده آشنا به مطائل الکترومغناطیسی است ما صرفاً به اعمال شرایط مرزی در یک مرز یا مرز دو محیط بسنده می نمائیم. طراحی فیلترهای منوری بمنظور بازتاب و یا عبور طول موج های خاص و یا باند خاص از طول موجها طراحی میگردد که میزان بازتاب و عبور آن برای طراح بعنوان کیک پارامتر قابل تغییر مطرح می باشد و در واقع میزان بازتاب و عبور را در محدوده خاصی که مورد مظر است اتفزایش و یا کاهش میدهد و یا پالایش طول موجها را با بالا بردن میزان عبور یک طول موج و یا یک محدوده طول موجها و کاهش عبور دیگر طول موجها بوسیله بازتاب یا جذب را انجام میدهد که همه اینها در طراحی فیلتر عملی میگردد

نیاز و کاربرد به لاسه نشانی و یا طراحی فیلترهای نوری برای آینه های گرمایی (بازتابنده های گرمایی) و آینه های سرد، (که آینه های گرمایی فروسرخ را بازتاب و آینه های سرد فروسرح را عبور میدهند و در نورافکنها استفاده میشود)

آینه های دوررنگی (شامل پالایه های نوارگذاری که بررخهای منشوری لایه نشانی شده تا نور را در دوربینهای رنگی به کانالهای قرمز، سبز و آبی تقسیم کند) آینه های لیزر با بازتاب بالا و یا در انترفرومترهای فابری پرو، مایکسون، لنزهای دوربین های عکاسی، نظامی، تلسکوپها، دوربین های نظامی دید در شب، هدایتگر موشک و ; میباشد

در این پروژه تکیه بر فیلترهای ضد بازتاب و تا حدی محدود به آینه ها نیز اشاره می نمائیم و ضمناً تلاش بر این بوده که با دستیابی به متد طراحی و محاسبات آن به قدرت طراحی فیلتر توسط کامپیوتر دست یابیم که به این منظور یک سری برنامه هائی در جهت طراحی کارائی فیلترها نوشته شد که نیاز به گسترش خیلی بیشتری دارند بهر حال برای این پروژه بالغ بر 200 صفحه ترجمه و مطالعه شده و نیز بالغ بر 100 ساعت کار با کامپیوتر برای دستیابی به بهترین طراحی ها و برنامه نویسی انجام گردیده است

امیدوارم این مجموعه در هرچه آشنا شدن به فیلترهای مختلف با محاسبات و طراحی آنها و کارهای عملی انجام شده نقطه شروعی در جهت طراحی فیلتر در صنعت و ; عملی شده باشد


مرز

فیلترهای نازک معمولاً شامل یک تعدادی مرز بین لایه های همگن هستند و خوبست بدانیم که این مرزها چه اثری روی موج فرودی که ما می خواهیم محاسبه کنیم خواهند گذاشت یک تک مرز ساده ترین حالت میباشد. ابتدا فرض می گیریم جذب در لایه ناچیز و صفر باشد و یک موج هارمونیک پلاریزه تخت را برای موج فرودی درنظر گرفته ایم هنگامی که یک موج به یک مرز بین دو محیط برخورد می کند یک قسمت از آن بازتاب و یک قسمت آن عبور می کند شکل همه آنها بصورت eiwt میباشد منتهی یک اخلاف فاز از این قسمت ناشی میشود که به میزات ضخامت محیط عبوری دارد. ضمناً میزان دامنه عبوری نیز تغییر می نماید

میدانیم که میدان الکتریکی مماسی و میدان مغناطیسی مماسی موج فرودی در عبور از مرز در محیط ÷یوسته است. (محیط دی الکتریک درنظر گرفته شده است) با توجه به شکل و با توجه به شرایط مرزی میدانهای E و B را در دو طرف مرز میتوان با معادلات زیر نوشت

 که در اینجا  میدان E فرودی اولیه

که در اینجا  میدان E بازتابیده از مرز اول a

 میدان E عبوری از مرز اول a

 میدان E بازتابیده از مرز دوم b

 میدان E عبوری از مرز دوم b

 حاصل جمع تمام میدانهای E که بطرق فصل مشترک a فرود میآیند

 حاصل جمع تمام میدانهای E که بطرق فصل مشترک b فرود میآیند

ضخامت

ضخامت عامل موثری در ایجاد اختلاف فاز می باشد لذا هنگامی که ضخامت تغییر می کند اختلاف فاز ایجاد شده باعث کاهش یا افزایش بازتاب می شود. میزان اختلاف فاز از رابطه زیر بدست می آید

که در رابطه روبرو k عدد موج و  اختلاف راه نوری می باشد

علت اینکه ما اختلاف فاز  بین نور رودی و بازتابی ایجاد نمائیم بعلت این است که بتوانیم با ناهمسازی بین موج فرودی و بازتابی باعث عدم بازتاب در سطحی شده و در نتیجه عبور را افزایش دهیم و اگر مایل به ساخت آینه باشیم می بایست بین نور فرودی و بازتابی همسازی ایجاد کرده و با هم فاز کردن آنها باعث شویم عبور کم شده و نور فرودی با همان دامنه و فاز در سطح اول بازتاب شده در اینصورت بازتاب افزایش یابد که در اینجا با در نظر گرفتن اختلاف فاز 0  یا 2 می توان مقدار ضخامت اپتیکی را بدست آورد البته برای 2 بار رفت و برگشت نور بایستی مضربی  از  باشد که در نتیجه فقط برای یکبار رفت  مقدار nt برابر  یا مضاربی از   بدست خواهد آمد

تک لایه ای ضد بازتاب

 

برای دریافت پروژه اینجا کلیک کنید


کلمات کلیدی :

<   <<   16   17   18   19   20   >>   >